浏览数量: 10 作者: 本站编辑 发布时间: 2022-02-15 来源: 本站
钽及钽合金具有高熔点、良好的耐蚀性能、优异的高温强度、良好的加工性能、可焊接性能、较低的塑/脆转变度及优异的动态力学性能等优点,使其广泛应用于电子、武器、化工、航空航天工业与空间核动力系统等行业 是在1600 ℃~1 800 ℃环境下工作的理想结构材料。虽然钽及钽合金拥有优异的高温力学性能 ,但是其高温下抗氧化性能较差 ,金属钼在500℃以上便会发生加速氧化生成Ta205 由于以上特性这使得钽及钽合金的应用受到严重制约。要想扩大其应用范围 提升钽及钽合金的耐高温抗氧化性能具有十分重要的意义。钽及钽合金的耐高温抗氧化保护主要有两种方法"∶①表面涂层耐高温抗氧化保护 ②合金化耐高温抗氧化保护。
合金化法虽然能提升钽及钽合金的抗氧化性能 ,但前提条件是合金化元素用量须达到临界值以上才能对基体起到保护作用 ,同时 对基体的其它性能会产生较大影响 ,尤其是对基体高温机械性能的影响较大。
表面涂层可以同时具有较低的氧气渗透能力、良好的化学与物理相容性和稳定性、低的挥发性、良好的热膨胀系数匹配性和结合能力、高温自愈合能力及不能影响钽合金基材原有的良好机械性能等优点 是解决钽合金高温力学性能与抗氧化性能问题的最佳方法。
钽及钽合金材料作为高温结构材料应用的关键部件 在航空、航天、核工业以及武器领域的应用前景日趋明朗。因此 钽及钽合金的抗氧化涂层技术也向着耐高温、长寿命、抗冲刷等方向发展。
①添加合金元素改善钽及钽合金性能。使氧化性能和机械性能之问取得平衡 满足材料服役环境的需要。
②大力发展复合涂层制备技术。采用多种表面涂层技术相结合 ,从工艺上实现涂层的复合结构 提高对涂层制备过程中工艺参数的控制能力。
③新涂层工艺的开发 复合涂层内层与外层之间 涂层与基体之间的物理化学结合研究将是今后研究工作的重点之一。
④降低成本、简化制作工艺、缩短合成周期也将是今后抗氧化涂层的发展方向之一。