浏览数量: 0 作者: 本站编辑 发布时间: 2022-05-19 来源: 本站
作为最轻质的金属结构材料,镁在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统的金属材料,镁的塑性较差,型材和零件的变形加工困难,工艺成本高。这严重制约了镁作为结构材料的广泛应用。
当前主流观点认为,塑性差是镁的本征属性,原因是镁中的锥面位错(一种晶体缺陷)会自发地分解为不可滑移的结构,无法协调塑性变形。因此,提高塑性需要通过添加某些特定的元素来调节锥面位错的行为。但也有一些学者持不同观点,认为锥面位错是有效的塑性变形载体,只要能促进锥面位错的形核和滑移,镁的塑性就可以提高。
上述争议直接影响到下一代高塑性镁合金的设计思路和技术路线,因而成为一个急需解决的科学难题。然而,由于锥面位错的几何形态和结构非常复杂,很难通过实验来全面地解析。此前的研究通常以计算机模拟为主,相关观点和推论均缺乏有力的实验证据。
有鉴于此,西安交通大学单智伟教授团队最新发现:塑性差并不是镁的固有属性,通过提高流变应力(如通过细化晶粒或提高应变速率)来促进位错形核和滑移,可能是行之有效的增塑方法。
经过广泛调研和深入讨论,西安交通大学单智伟教授团队决定采用以下策略:
1)通过原位电镜纳米力学测试技术来解决样品几何形变、微观结构演化以及力学曲线三者之间一一对应的难题;
2)选取合适的加载方向来消除其它位错的干扰;
3)采用梯度样品设计来解决捕捉和表征单根位错难的问题;
4)运用三维图像重构技术来解决位错滑移面不易确定的难题;
5)通过对比力学曲线的方式澄清了电子束影响的问题。
得益于这些有针对性的实验设计,研究团队以令人信服的结果,证明了最起码对亚微米尺度的纯镁而言,各种类型的锥面位错(刃、螺、混合型)不仅可以滑移,而且可以导致非常大的塑性变形。与块体材料相比,微纳米样品呈现出更高的屈服强度和流变应力。因此,研究团队推测高应力促进了锥面位错的形核和滑移,进而提高了测试样品的塑性。通过进一步深入分析,不仅确定了位错的滑移面,而且还清晰地观察到锥面位错的交滑移、位错偶极子的形成以及位错往复运动等此前尚未报道过的重要现象。
该研究为完善镁的塑性变形理论提供了重要的实验数据,并为高塑性镁合金的开发带来新的启发。