浏览数量: 5 作者: 本站编辑 发布时间: 2022-12-13 来源: 本站
过渡元素(transition elements)是元素周期表中从ⅢB族到VⅢ族的化学元素(也有些地方将所有的副族及VIII族元素归到过渡元素范围内) 。这些元素在原子结构上的共同特点是价电子依次充填在次外层的d 轨道上 ,因此,有时人们也把镧系元素和锕系元素包括在过渡元素之中 。由于ⅠB族元素(铜、银、金)在形成+2和 +3 价化合物时也使用了d电子;ⅡB族元素(锌、镉、汞)在形成稳定配位化合物的能力上与传统的过渡元素相似,因此,也常把ⅠB和ⅡB族元素列入过渡元素之中。
性质特征
过渡元素的特征性质有:
①它们都是金属,具有熔点高、沸点高、硬度高、密度大等特性,而且有金属光泽,延展性、导电性和导热性都很好 ,不同的过渡金属之间可形成多种合金。
②过渡金属的原子或离子中可能有成单的d电子 , 电子的自旋决定了原子或分子的磁性。因此,许多过渡金属有顺磁性,铁、钴、镍3种金属还可以观察到铁磁性。可用作磁性材料。
③ 过渡元素的d电子在发生化学反应时都参与化学键的形成 ,可以表现出多种的氧化态。最高氧化态从钪、钇、镧的+3一直到钌、锇的+8 。过渡元素在形成低氧化态的化合物时 ,一般形成离子键,而且容易生成水合物;在形成高氧化态的化合物时 ,形成的是共价键。
④过渡元素的水合离子在化合物或溶液中大多呈显一定的颜色,这是由于具有不饱和或不规则的电子层结构造成的 。
⑤ 过渡元素具有能用于成键的空d轨道以及较高的电荷/半径比,都很容易与各种配位体形成稳定的配位化合物。过渡金属大多有其独特的生产方法:电解法、金属热还原法、氢还原法和碘化物热分解法。
原子半径
过渡元素与同周期的ⅠA、ⅡA族元素相比较,原子半径较小。
各周期中随原子序数的增加,原子半径依次减小,而到铜副族前后,原子半径增大。
各族中从上到下原子半径增大,但第五、六周期同族元素的原子半径很接近,铪的原子半径(146 pm)与锆(146 pm)几乎相同。
同周期过渡元素d轨道的电子未充满,d电子的屏蔽效应较小,核电荷依次增加,对外层电子的吸引力增大,所以原子半径依次减小。到铜副族前后,充满的d轨道使得屏蔽效应增强,原子半径增大。由于镧系收缩的影响,第五、六周期同族元素的原子半径相近。
离子半径变化规律和原子半径变化相似,即同周期自左向右,氧化态相同的离子半径随核电荷的增加逐渐变小;同族元素的最高氧化态的离子半径从上到下,随电子层数增加而增大;镧系收缩效应同样影响着第五、六周期同族元素的离子半径。
性质对照
物理性质
① 过渡元素一般具有较小的原子半径,最外层s电子和次外层d电子都可以参与形成金属键,使键的强度增加。
②过渡金属一般呈银白色或灰色(锇呈灰蓝色),有金属光泽。
③ 除钪和钛属轻金属外,其余都是重金属。
④ 大多数过渡元素都有较高的熔点和沸点,有较大的的硬度和密度。如:钨是所有金属中最难熔的,铬是金属中最硬的。
化学性质
① 过渡元素的金属性比同周期的p区元素强,而弱于同周期的s区元素。
② 第一过渡系比第二、三过渡系的元素活泼-----核电荷和原子半径两个因素。
同一族中自上而下原子半径增加不大,核电荷却增加较多,对外层电子的吸引力增强,核电荷起主导作用. 第三过渡系元素与第二过渡系元素相比,原子半径增加很少(镧系收缩的影响),所以其化学性质显得更不活泼。
第一过渡系单质一般都可以从稀酸(盐酸和硫酸)中置换氢,标准电极电势基本上从左向右数值逐渐增大,这和金属性的逐渐减弱一致。
锰的数值有些例外(比铬还低):失去两个4s电子形成稳定的3d构型。
钪、钇和镧是过渡元素中最活泼的金属,在空气中能迅速被氧化,与水反应则放出氢,也能溶于酸,这是因为它们的次外层d轨道中仅有一个电子,这个电子很容易失去,所以它们的性质较活泼并接近于碱土金属。